褚孫錦 教授

 

Sun-Chin Chu

office: Room 432

Phone: (05)2720411#66131

Fax: (05)2720497

Email: mthscc@ccu.edu.tw / sunchinchu@gmail.com

研究領域

  • 微分幾何
  • 幾何分析

學歷

  • 美國明尼蘇達大學雙城分校數學博士
  • 國立清華大學數學學士

經歷

  • 國立中正大學 數學系 教授 (2007/08/01~迄今)
  • 國立中正大學 數學系 副教授 (2000/08/01~2027/07/31)
  • University of California, Los Angeles Department of Mathematics Hedrick Assistant Professor (1997/07~2000/06)
  • Institute for Advanced Study School of Mathematics Member (1997/07~1998/03)

學術著作

期刊論文

1.Chu, Sun-Chin (2008). Space-time approach to Perelman’s L-geodesics and an analogy between Perelman’s reduced volume and Huisken’s monotonicity formula. Taiwanese J. Math. 12, no. 1, 255–268.

2.Chu, Sun-Chin (2007).  Type II ancient solutions to the Ricci flow on surfaces. Comm. Anal. Geom. 15, no. 1, 195–215.

3.Chu, Sun-Chin (2005). Geometry of 3-dimensional gradient Ricci solitons with positive curvature. Comm. Anal. Geom. 13, no. 1, 129–150.

4.Chow, Bennett; Chu, Sun-Chin (2001).  Space-time formulation of Harnack inequalities for curvature flows of hypersurfaces. J. Geom. Anal. 11, no. 2, 219–231. (Reviewer: Miles L. Simon) 

5.Chow, Bennett; Chu, Sun-Chin (1996).  A geometric approach to the linear trace Harnack inequality for the Ricci flow. Math. Res. Lett. 3, no. 4, 549–568.

6.Chow, Bennett; Chu, Sun-Chin (1995).  A geometric interpretation of Hamilton’s Harnack inequality for the Ricci flow. Math. Res. Lett. 2, no. 6, 701–718.

專書

1.Chow, Bennett; Chu, Sun-Chin; Glickenstein, David; Guenther, Christine; Isenberg, James; Ivey, Tom; Knopf, Dan; Lu, Peng; Luo, Feng; Ni, LeiThe Ricci flow: techniques and applications. Part IV. Long-time solutions and related topics. Mathematical Surveys and Monographs, 206. American Mathematical Society, Providence, RI, 2015. xx+374. ISBN: 978-0-8218-4991-0

2.Chow, Bennett; Chu, Sun-Chin; Glickenstein, David; Guenther, Christine; Isenberg, James; Ivey, Tom; Knopf, Dan; Lu, Peng; Luo, Feng; Ni, LeiThe Ricci flow: techniques and applications. Part III. Geometric-analytic aspects. Mathematical Surveys and Monographs, 163. American Mathematical Society, Providence, RI, 2010. xx+517 pp. ISBN: 978-0-8218-4661-2

3.Chow, Bennett; Chu, Sun-Chin; Glickenstein, David; Guenther, Christine; Isenberg, James; Ivey, Tom; Knopf, Dan; Lu, Peng; Luo, Feng; Ni, LeiThe Ricci flow: techniques and applications. Part II. Analytic aspects. Mathematical Surveys and Monographs, 144. American Mathematical Society, Providence, RI, 2008. xxvi+458 pp. ISBN: 978-0-8218-4429-8

4.Chow, Bennett; Chu, Sun-Chin; Glickenstein, David; Guenther, Christine; Isenberg, James; Ivey, Tom; Knopf, Dan; Lu, Peng; Luo, Feng; Ni, Lei The Ricci flow: techniques and applications. Part I. Geometric aspects. Mathematical Surveys and Monographs, 135. American Mathematical Society, Providence, RI, 2007. xxiv+536 pp. ISBN: 978-0-8218-3946-1; 0-8218-3946-2

專題研究計畫

1. 2 維球面上Ricci 流的 ancient solutions 的分類(1/3).96-2628-M-194-010-. Project Period: 2007/08/01-2008/07/31.

2.  2 維球面上Ricci 流的 ancient solutions 的分類(2/3). 97-2115-M-194-001-. Project Period: 2008/08/01-2009/07/31.

3. 2 維球面上Ricci 流的 ancient solutions 的分類(3/3). 98-2115-M-194-001-. Project Period: 2009/08/01-2010/07/31

4. 具有有界正曲率的3維非緊緻 k-   noncollapsed ancient solution 的探. 99-2115-M-194-006-. Project Period: 2010/08/01-2011/07/31.

5. 具有有界正曲率的3維非緊緻 k-noncollapsed ancient solution 的探. 100-2115-M-194-009-. Project Period: 2011/08/01-2013/07/31.

6. 具有有界正曲率的3 維非緊緻 k-noncollapsed ancient solution 的探討之三. 101-2115-M-194-011-. Project Period: 2012/08/01-2013/07/31.

7. Harmonic map flow coupled with the Ricci flow. 102-2115-M-194-005-. Project Period: 2013/08/01-2014/07/31