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Abstract
In this talk, I will discuss the theoretical analysis of the sample complexity
of kernel methods in machine learning, with applications to manifold
learning and reinforcement learning. In manifold learning, we introduce
scalable landmark-based spectral algorithms, Landmark Alternating
Diffusion (LAD) and Landmark Vector Diffusion Maps (LA-VDM),
designed for sensor fusion and for capturing complex geometric structures,
respectively. Under standard manifold assumptions, we present theoretical
guarantees on consistency, convergence, and finite-sample error. In
reinforcement learning, we analyze kernel-based Q-learning and derive
finite-sample complexity bounds for learning an e-optimal policy in large
state—action spaces, where the efficiency is characterized by the kernel’s
information gain. Together, these results provide a sample-complexity
perspective on kernel methods across different learning settings, with brief
remarks on related work in topological data analysis and signal processing.
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