Jump to the main content block
 

Shou-Te Chang

Shou-Te Chang

office: Room 414

Phone: (05)2720411#66101

Fax: (05)2720497

Email:  stchang@ccu.edu.tw / shoute.chang@gmail.com

Specialized Areas

  • Commutative Rings and Algebras

 

Degree Institution

  • Ph.D. in Mathematics, University of Michigan at Ann Arbor

Rank

  • Associate Professor

Publication

Journal Articles

  1. S.-T. Chang, 1997, “Betti numbers of modules of exponent two over regular local rings”, Jour. Of Algebra, 193, 640-659.
  2. S.-T. Chang, 1997, “Hilbert-Kunz functions and Frobenius functors”, Transactions ofthe A.M.S., vol. 349, no. 3, 1091-1119.
  3. S.-T. Chang, 1999,An algorithm for calculating Betti numbers of manageable modules, Taiwanese Journal Mathematics, vol. 3, no. 3, 367-379.
  4. S.-T. Chang and M. Eie, 2000, An arithmetic property of Fourier coefficients of singular modular forms on the exceptional domain, Transactions of the A.M.S. , vol.353, no.2, 539-556.
  5. S.-T. Chang, 2000, Betti numbers of modules of essentially monomial type, Proceedings of the AMS, vol. 128, no. 7, 1917-1926.
  6. Chang, Shou-Te; Huang, 2012, I-Chiau Continuous homomorphisms and rings of injective dimension one. Math. Scand. 110 (2012), no. 2, 181–197.

Conference Papers

  1. S.-T. Chang, 1993, The asymptotic behavior of Hilbert-Kunz functions and their generalizations, special session on Modules and Commutative Algebra for the 880th meeting of American Mathematical Society, abstract.

Technical Reports

  1. S.-T. Chang, 1993, The asymptotic behavior of Hilbert-Kunz functions and their generalizations, ph.D. thesis, University of Michigan, Ann Arbor, Dept. of Mathematics.

Books

  1. Eie, Minking; Chang, Shou-Te A course on abstract algebra. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2010. xII+359 pp. ISBN: 978-981-4271-88-2; 981-4271-88-8
  2. Eie, Minking; Chang, Shou-Te A course on abstract algebra. Second edition of [MR2655460]. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2018. xIII+417 pp. ISBN: 978-981-3229-62-4

 

Click Num:
Login Success